This work aims at improving the energy consumption forecast of electric vehicles by enhancing the prediction with a notion of uncertainty. The algorithm itself learns from driver and traffic data in a training set to generate accurate, driver-individual energy consumption forecasts.
DETAILS
Stochastic Range Estimation Algorithms for Electric Vehicles using Data-Driven Learning Models
Scheubner, Stefan
Kartoniert, 192 S.
graph. Darst.
Sprache: Englisch
21 cm
ISBN-13: 978-3-7315-1166-3
Titelnr.: 96134193
Gewicht: 370 g
KIT Scientific Publishing (2022)
Karlsruher Institut für Technologie (KIT Scientific Publishing c/o KIT-Bibliothek
Straße am Forum 2
76131 Karlsruhe, Baden
info@ksp.kit.edu