An early detection and diagnosis of atrial fibrillation sets the course for timely intervention to prevent potentially occurring comorbidities. Electrocardiogram data resulting from electrophysiological cohort modeling and simulation can be a valuable data resource for improving automated atrial fibrillation risk stratification with machine learning techniques and thus, reduces the risk of stroke in affected patients.
DETAILS
Multiscale Cohort Modeling of Atrial Electrophysiology : Risk Stratification for Atrial Fibrillation through Machine Learning on Electrocardiograms
Nagel, Claudia
Kartoniert, 280 S.
graph. Darst.
Sprache: Englisch
210 mm
ISBN-13: 978-3-7315-1281-3
Titelnr.: 96465339
Gewicht: 520 g
KIT Scientific Publishing (2023)
Karlsruher Institut für Technologie (KIT Scientific Publishing c/o KIT-Bibliothek
Straße am Forum 2
76131 Karlsruhe, Baden
info@ksp.kit.edu