This work presents a behavior planning algorithm for automated driving in urban environments with an uncertain and dynamic nature. The algorithm allows to consider the prediction uncertainty (e.g. different intentions), perception uncertainty (e.g. occlusions) as well as the uncertain interactive behavior of the other agents explicitly. Simulating the most likely future scenarios allows to find an optimal policy online that enables non-conservative planning under uncertainty.
DETAILS
Belief State Planning for Autonomous Driving: Planning with Interaction, Uncertain Prediction and Uncertain Perception
Hubmann, Constantin
Kartoniert, 180 S.
graph. Darst.
Sprache: Englisch
210 mm
ISBN-13: 978-3-7315-1039-0
Titelnr.: 94539495
Gewicht: 350 g
KIT Scientific Publishing (2021)
Karlsruher Institut für Technologie (KIT Scientific Publishing c/o KIT-Bibliothek
Straße am Forum 2
76131 Karlsruhe, Baden
info@ksp.kit.edu