In this work we explore the Floquet theory for evolution equations of the form u'(t)+A_t u(t)=0 (t real) where the operators A_t periodically depend on t and the function u takes values in a UMD Banach space X. We impose a suitable condition on the operator family (A_t) and their common domain, in particular a decay condition for certain resolvents, to obtain the central result that all exponentially bounded solutions can be described as a superposition of a fixed family of Floquet solutions.
DETAILS
Floquet theory for a class of periodic evolution equations in an Lp-setting
Dissertationsschrift
Gauss, Thomas
Kartoniert, III, 130 S.
Sprache: Englisch
21 cm
ISBN-13: 978-3-86644-542-0
Titelnr.: 28596180
Gewicht: 150 g
KIT Scientific Publishing (2010)
Karlsruher Institut für Technologie (KIT Scientific Publishing c/o KIT-Bibliothek
Straße am Forum 2
76131 Karlsruhe, Baden
info@ksp.kit.edu