This work addresses the problem of how to capture the dynamics of maneuvering objects for visual tracking. Towards this end, the perspective of recursive Bayesian filters and the perspective of deep learning approaches for state estimation are considered and their functional viewpoints are brought together.
DETAILS
Dynamic Switching State Systems for Visual Tracking
Becker, Stefan
Kartoniert, 228 S.
graph. Darst.
Sprache: Englisch
21 cm
ISBN-13: 978-3-7315-1038-3
Titelnr.: 88773890
Gewicht: 430 g
KIT Scientific Publishing (2020)
Karlsruher Institut für Technologie (KIT Scientific Publishing c/o KIT-Bibliothek
Straße am Forum 2
76131 Karlsruhe, Baden
info@ksp.kit.edu